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In this paper, the effects of damage in the form of transverse matrix cracking in
fibre-reinforced laminates of arbitrary layup are considered in the context of contin-
uum damage mechanics. A complete model for the damage process is accomplished
by establishing an appropriate damage representation and a damage growth law.
Talreja’s damage representation has been modified and significant simplifications
have been achieved in defining the damage-related material constants for this par-
ticular form of damage in a convenient way. The modified damage representation is
lamina-based while Talreja’s damage representation is, in the context of this paper,
laminate-based. The assumptions introduced to simplify the damage representation
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are examined and justified. Employing the concept of a damage surface, an incre-
mental damage growth law is formulated. A complete damage model is achieved by
combining the damage representation and the damage growth law. The model results
in a new laminate theory which describes the deformation of laminates as well as the
development of the damage process in the form of crack multiplication. This enables
practical predictions to be made of the behaviour of laminated structures made of
fibre-reinforced composites experiencing transverse matrix cracking.

Keywords: damage model; transverse matrix cracking; crack multiplication;
continuum damage mechanics; fibre-reinforced composites; composite laminates

1. Introduction

In laminated structures composed of uniaxially fibre-reinforced composite laminae,
matrix cracking transverse to the plane of the laminae and parallel to the fibres is
one of the most common types of damage arising in applications of such structures.
Many publications have been devoted to micromechanics-based investigations of this
problem (see, for example, Altus & Ishai 1986; Garrett & Bailey 1977; Hashin 1985;
Herakovich et al . 1988; Highsmith & Reifsnider 1982; Lewinski & Telega 1996a, b;
McCartney 1990; Swanson 1989) although most publications in the literature address
only cross-ply laminates. Because of the nature of this type of damage, usually involv-
ing a large number of cracks in a characteristic volume of the material called the
representative volume, continuum damage mechanics (CDM) has been employed by
several authors (Allen et al . 1987a, b; Talreja 1985a, b, 1986; Talreja et al . 1992) to
model its effects. A CDM representation of damage expresses mathematically the
effects of damage at any given level. Talreja (1985a) used a vectorial damage vari-
able, approached the problem of damage in composite materials in a systematic way
and applied the results directly to the case of damage resulting from matrix cracks.
Applications of the theory can be found in his subsequent publications (Talreja 1985b,
1986; Talreja et al . 1992). A vectorial damage variable has the advantage of simplic-
ity relative to other damage variables expressed in terms of higher-order tensors but
loses generality in reflecting the influence of the spatial geometry of the crack surfaces
since it takes account of only the planar projection of the crack surfaces (Krajcinovic
1984). However, for transverse matrix cracks in uniaxially fibre-reinforced compos-
ites, the spatial shapes of the crack surfaces do not play a significant role since
fairly flat crack surfaces are usually observed. Therefore, Talreja’s damage repre-
sentation using a vectorial damage variable is beneficial for this particular mode of
damage.

Talreja’s (1985a) work appears to be the first paper to apply the theory of CDM
systematically to modelling the effects of damage in fibre-reinforced composite mate-
rials. As an early attempt at employing CDM to composite materials, Talreja’s theory
is remarkable. However, in reviewing it, the following comments can be made.

(1) Talreja treated a whole laminate as a single material with which the dam-
age variable is associated. As a result, all the damage-related material constants are
defined for this ‘material’. Talreja suggested that the damage-related material con-
stants should be determined by experiments. However, these constants depend not
only on the properties of the constituent materials in the laminate but also on the
layup configuration of the laminate. Therefore, it appears that, before the theory
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can be applied to any laminate to describe its behaviour under damage, a series of
tests would have to be conducted on a laminate of the same material and the same
layup to obtain these constants. This makes the implementation of this theoretical
approach impractical because of its heavy dependence on experiments. Consequently,
an approach which is essentially lamina-based but incorporates the influence of the
presence of adjacent laminae of different fibre orientations is desirable for practical
applications.

(2) Another shortcoming of treating a laminate as a material is that it ignores the
structural nature of the laminate completely. The position of the cracked lamina in
the laminate makes a difference to the behaviour of the laminate. In Talreja’s dam-
age representation there is an empirical factor which takes account of the constraints
on the crack surface displacements depending mostly on whether the cracked lamina
is a surface lamina or is embedded in the laminate. This is obviously insufficient to
reflect the complete structural nature of the laminated composite. Although such an
approach may be acceptable for cases involving only membrane loading and deforma-
tion where the laminate and the damage distribution have middle-plane symmetry,
it is not appropriate when, for instance, bending is present. In this case laminae
may make significantly different contributions to the overall behaviour of the lam-
inate simply because of their different positions in the laminate. Since one of the
motivations of the present work is to implement damage mechanics to general prob-
lems in which bending could be one of the major aspects, an approach which takes
account of the development of damage in specific laminae and quantifies its effects
with due respect to where the cracked lamina is placed in the laminate needs to be
sought.

(3) In Talreja’s (1985a) original work, the damage variable was defined as an
unspecified function of crack density (or crack surface area). In his later applica-
tions (e.g. Talreja 1985b) this function was taken to have a form which results in
all the effective material properties being proportional to the crack density. How-
ever, from experimental data (Highsmith & Reifsnider 1982) and from the analyses
of cracked laminates (Hashin 1985), the effective Young’s modulus of the cracked
laminate in the direction perpendicular to the cracks showed significant nonlinear-
ity with respect to the crack’s density. The same situation arises with the effec-
tive in-plane shear modulus of a cracked laminate. Thus, the applicability of Tal-
reja’s damage representation is limited to a small range of crack density in which
linearity is a reasonable approximation to a nonlinear curve but this range may
not be sufficient for practical problems and, therefore, this aspect also needs to be
addressed.

In the first part of this paper an attempt is made to examine these practical
shortcomings. First, the cracked lamina is treated as a material rather than the
whole laminate. This approach was also employed in Thionnet & Renard (1993),
where a meso–macro approach was proposed. The present paper will promote such
an approach, to be hereafter referred to as a lamina-based damage representation, to
a simpler but more developed state. In it, the damage variable is associated with an
individual lamina or, in other words, the damage (variable) field is defined in a piece-
wise manner (from lamina to lamina) over the thickness of the laminate. With the
help of this damage representation, the effective material properties of the cracked
lamina can be expressed in terms of the damage variable while the overall behaviour
of the laminate can then be described by employing a laminate theory. This is seen
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as the most effective way of minimizing the dependence of the damage representation
on experiments. Additionally, it takes account of the influence of the position of the
cracked lamina in the laminate within the framework of laminate theory.

As a by-product of this approach, there is no need to introduce so-called multi-
vectorial damage variables (Talreja 1985a) even though several cracked laminae of
different ply-angles are involved in the laminate. As long as the only damage mode
is transverse matrix cracking, it can be treated separately at the lamina level while
the assembly of all the laminae is governed by a laminate theory.

The nonlinear relation between the effective material properties (in particular,
transverse Young’s modulus E2 and in-plane shear modulus G6) and crack density,
which has been ignored in Talreja’s later work, can be taken into account. This is
achieved by introducing a different measure of damage. There is no reason why the
damage measure has to be crack density. If one retains the original damage measure
(the length squared of the vectorial damage variable) as in Talreja (1985a), the linear
relation between the effective material properties and the damage, as embodied in
equations (2.1) in the next section, remains unimpaired.

The effective properties of a lamina are affected by the layup of the laminate as a
result of the different constraints imposed on the lamina arising from its interaction
with surrounding laminae. In any lamina-based approach, there should be a means
of allowing this effect to be taken into account. This is one of the important aspects
of the proposed damage representation.

Having established a damage representation, a damage model for transverse matrix
cracking can be completed by introducing a damage growth law describing the evolu-
tion of damage. The concept of a damage surface has been introduced for establishing
damage growth laws in several studies (e.g. Krajcinovic & Fonseka 1981). This plays
a similar role to the yield surface in the theory of plasticity. However, as was noted in
Krajcinovic & Fonseka (1981), the construction of damage surfaces has suffered from
the lack of experimental data, and the process has had to be based on a number
of arbitrary assumptions. Removing these arbitrary assumptions from the theory
is not an easy task, and is unlikely to be achieved for general cases in the short
term. It therefore seems appropriate at this stage to establish particular, instead of
general, damage growth laws for specific problems using the concept of the damage
surface.

A damage process involves two aspects, the initiation and the growth of dam-
age. The latter includes both the development in severity and the expansion of the
damaged zone. Consider damage-zone expansion first. This is a typical structural
feature resulting from non-uniform stress distributions and the transition from an
undamaged state to a damaged state at a material point as a result of load shed-
ding and local increases in stress. It is essentially a damage initiation process as far
as this material point is concerned and will be treated as such herein. A material
‘point’ is synonymous with a representative volume, which is a compromise between
a volume of material small enough for the non-uniformity in stress distribution to be
neglected (infinitesimal macroscopically), and large enough for the discrete features
of the damage to be smeared within it (infinitely large microscopically). With the
help of this concept, one can concentrate on establishing a constitutive relationship
governing the damage process in a representative volume and leave the structural
behaviour, i.e. the expansion of the damaged zone and the spatial non-uniformity of
deformation, to a structural analysis using, for example, finite elements. Thus within
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a typical representative volume, the damage process has two elements, its initiation
and its development in severity.

Confining attention to the problem of transverse matrix cracking in a representa-
tive volume, damage development in severity takes the form of crack multiplication.
The assumption of the existence of a damage surface unifies the initiation and the
development in severity. The damage process is determined completely by the inter-
nal state in the material of the representative volume and the history of achieving
this state. The internal state is described by stresses, strains and the damage. A
damage surface is a function defined in the internal state variable space. One might
suggest from the perspective of physical cracking processes that a crack at a point
can result from one of the two different processes: the initiation of a new crack; and
elongation of an existing crack from a neighbouring representative volume. They may
appear to be two completely different mechanisms. The latter can be described as
crack propagation using the terminology of fracture mechanics. Normally crack prop-
agation is largely dependent on the crack length but, in composite laminates, there is
evidence that this crack-length dependence is eliminated by the constraints provided
by the laminae neighbouring the cracked lamina (Ogin & Smith 1987). This is one of
the most important reasons for using laminated materials. It is, therefore, a natural
inference that the extension of existing cracks into uncracked regions is more to do
with the local stress state than how far the crack has grown from its original point of
initiation. In this sense, crack initiation and crack extension from pre-existing cracks
are both determined by the local stress state. One could still argue that the two
phenomena correspond to different levels of the internal state. This is a matter to
be considered in the future development of the model. It is assumed here, for the
sake of simplicity, that they both correspond to the same internal state. Thus, the
onset of damage in the material at a point is predicted by the stress state at the
point which can be obtained from a laminate analysis without involving any other
considerations.

Applying the above argument to the initiation of cracking at a point, the initial
failure in conventional laminate analysis, often referred to as first ply failure, can be
employed. A more sophisticated approach would take account of the dependence of
the in situ strength of the ply on the thickness of the ply (Fan & Zhang 1993). While
there is no major obstruction to doing this, the effects will be ignored in this paper
for the sake of simplicity.

The growth of damage in the form of crack multiplication in a representative vol-
ume is the main feature of damage growth which is considered herein. The argument
made above is to justify that the cracks in this representative volume can be con-
sidered as full length (in the plane of the lamina) cracks. The damage process is
then idealized by the problem of the generation of a third crack between two existing
neighbouring cracks. Further cracking like this is controlled by the stress state in the
material between the two existing cracks, although stress analyses of cracked lam-
inates (Hashin 1985; Li et al . 1994) show that the highest stress intensities always
appear in local regions around the crack tips at interlaminar interfaces. The high
stresses around the crack tips are relevant to the whole damage process, especially
to the initiation of other damage modes (Altus & Ishai 1986), but are unlikely to
affect the crack multiplication process, and, therefore, their effects will be ignored
here. The region of second-highest stress level is in the middle between two cracks
and, therefore, a new crack is most likely to appear there. This implies that the
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increase in crack density is by a doubling process rather than by continuous growth.
However, in reality, the process of crack multiplication appears to be defect-sensitive
and more often than not cracks are initiated from voids. Due to the random distri-
bution of defects in the material, the cracks will not be regularly spaced even if the
nominal global stresses are uniform. The cracks which are generated between existing
pairs of cracks in a uniformly loaded lamina will, therefore, not appear at the same
time but will do so separately, so that a continuously varying crack density increase
can be justified in a statistical sense, reflected by an increase in the damage variable.
Within the continuum idealization, the crack density, and hence the damage variable,
is assumed to be a field variable defined at every point in the material indicating, in a
statistical sense, the distribution of cracks in the representative volume surrounding
the point.

2. A lamina-based damage representation for damage due to
transverse matrix cracks

Given a laminate containing transversely cracked laminae, the major assumption
introduced in the present damage representation is that the behaviour of all the
laminae, cracked and uncracked, can be effectively described by plane-stress states.
The implication is that the effects of the out-of-plane stresses including the trans-
verse (through-thickness) direct stress and the two transverse shear stresses can be
neglected. These stresses are present in reality as a result of the presence of the trans-
verse matrix cracks, especially around the crack tips, and, therefore, the assumption
needs to be justified. This will be dealt with after the outcome of the assumption
has been displayed.

As indicated in § 1, a lamina-based damage representation is defined for each indi-
vidual lamina. An isolated lamina breaks at its weakest position, usually associated
with defects in the material before extensive cracks develop when it is subjected
to stress transverse to the fibres. The development of extensive transverse matrix
cracks in a lamina, therefore, takes place only when the lamina is contained within
a laminate. In dealing with an individual lamina here, in order to introduce the
lamina-based damage representation, the lamina should be understood to be a por-
tion isolated from the laminate in the sense of defining a classical free-body in statics.
However, the plane-stress assumption just introduced implies that the lamina is only
subjected to in-plane stresses but is capable of sustaining multiple cracks. Treat-
ing such an idealized cracked lamina as a material, its constitutive relations can be
established with the help of the Helmholtz free energy, a state function of the state
variables (the strain tensor components and the damage vector) subject to the con-
straints imposed by the second law of thermodynamics (Coleman & Noll 1963). For
problems involving small strain and small damage (the scale depends on the nature
of the problem and smallness does not necessarily mean a value far smaller than
unity), the Helmholtz free energy can be approximately expressed in the form of a
Taylor’s expansion truncated at the second-order terms of strains and the damage.
Use can be made of the integrity basis of invariants of the internal state variables
(the strain tensor and the damage vector) to minimize the number of material con-
stants by taking account of all the symmetries the material exhibits (Pipkin & Rivlin
1959). This procedure has been performed by Talreja (1985a) and, for the material
of a lamina containing transverse cracks in a plane-stress state, it results in effective
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material properties expressed as

E1 = E0
1 + a1ω, ν12 = ν0

12 + a4ω,

E2 = E0
2 + a2ω, ν21 = ν0

21 + a5ω,

G6 = G0
6 + a3ω,

 (2.1)

where E1, E2, ν12 and ν21 are the longitudinal and transverse Young’s moduli and
Poisson’s ratios, respectively, and G6 is the in-plane shear modulus, in a damaged
state. A superscript 0 refers to values in the undamaged state. ω is hereafter termed
the damage parameter and can be regarded as the length (squared) of the vectorial
damage variable. The constants ai (i = 1–5) are introduced as a set of damage-
related material constants. In Talreja’s (1985a) original expressions, the above effec-
tive material properties are associated with another set of damage-related constants.
Those constants are coefficients in the expression for the Helmholtz free energy and
have no direct physical meaning in terms of identifying them in mechanical tests,
while the ai in equations (2.1) can be easily deduced in principle since they are the
rates of change of these material properties with respect to the damage parameter.
One can relate constants ai in equations (2.1) to those introduced by Talreja through
algebraic linear transformations.

It is relevant to note that the damage parameter is a scalar but it should be
distinguished from the type of scalar damage variables referred to in some dam-
age representations (Krajcinovic 1984). The scalar characterization in terms of the
damage parameter ω, becomes possible as a result of the particular damage mode,
transverse matrix cracking, because the damage vector associated with it has a fixed
orientation and the only thing which varies is the length of the vector.

Ideally, the damage-related material constants in equations (2.1) would be deter-
mined by experiments on a damaged lamina. However, as has been pointed out
earlier, it is not possible to obtain a single lamina cracked at various levels exper-
imentally. A controlled damaged state can only be achieved when the lamina is
embedded into a laminate with other laminae of different fibre orientations or with
different materials. It would, therefore, appear necessary to establish a new testing
procedure involving laminated specimens from which information about the damaged
lamina could be extracted. Such a procedure is not available yet and alternative ways
of determining these constants are examined in this paper.

Implicit in equations (2.1) is the orthotropy of the cracked lamina. This is a natural
inference from the plane-stress state assumption. The material’s topological symme-
tries are not altered by the presence of cracks transverse to the lamina and parallel
to the fibres. Conversely, if the effective properties of a cracked lamina in a laminate
can be obtained, the orthotropy in the effective material properties provides one of
the checks on the plane-stress state assumption. This will be pursued in the next
section.

If the temperature is included in the Helmholtz free energy as an independent
state variable, the damage representation for the thermal expansion coefficients can
be obtained correspondingly. This could be incorporated in the model in a straight-
forward manner but, given the complexity of the model as presented herein, this will
be left for a future publication.

One important feature which will not be included is the bi-modular behaviour
resulting from the crack-closing effect when the lamina is subjected to compression
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perpendicular to the cracks. Taking this into consideration, the expressions for the
damaged material properties would have to be altered by defining them in a piece-
wise manner. This has not been investigated in any previously published work and
is seen as a future development. The basic principles would be the same as in the
cases treated herein.

(a) The damage parameter

The damage parameter, the length squared of the damage vector in Talreja’s
(1985a) work, is defined in general as a function of the crack surface area in a
representative volume of damage material. Transverse matrix cracks in a uniaxially
fibre-reinforced lamina embedded in a laminate, usually span the full thickness of
the lamina. This observation implies that the crack surface area is proportional to
the crack density in the representative volume. Thus the damage parameter can be
considered as a function of crack density. Talreja (1985b) chose a simple form for
the function, namely a damage parameter proportional to the crack density. The
price for this simplicity is the introduction of an extra restriction on the smallness
of the damage in addition to those introduced when the higher-order terms in the
expansion of the Helmholtz free energy are neglected. This may narrow the range of
applicability of the damage representation.

Talreja’s simple form for the damage parameter will be discarded here. Instead,
the damage parameter will be associated directly with the relative change in the
transverse Young’s modulus of the lamina. In equations (2.1), a different definition
of ω may result in different values for the damage-related material constants, ai, while
maintaining fixed ratios between these constants. In other words, the damage-related
constants, ai, are determined to within a constant factor. Absorbing an appropriate
common factor into ω, the damage parameter can be defined as the relative change
in the transverse Young’s modulus,

ω = 1− E2/E
0
2 . (2.2)

With this damage parameter, the effective material properties remain as linear
functions of the damage parameter. The nonlinear relation between the effective
material properties and the crack density, as shown in Highsmith & Reifsnider (1982)
and Hashin (1985), is taken into account by the relation between the damage param-
eter and the crack density. It is expected that the present damage representation can
be applied to a wider range of damage levels than that described by Talreja while
remaining in the small damage regime imposed by retaining only terms up to the
second order in the Helmholtz free energy.

A shortcoming of the proposed damage parameter is that it is less observable
than the crack density in an experiment and, since it depends on the layup of the
laminate, different values may be obtained in different laminates even though the
lamina is cracked to the same crack density. However, with the help of a method for
analysing a cracked laminate (see, for example, Li et al . 1994), correlation between
the damage parameter and the crack density can be established. It can be further
simplified if an appropriate curve-fit of this relation is introduced to express the
ω versus crack density relation in an analytical manner for the particular laminate
(Thionnet & Renard 1993).

With the damage parameter so defined, we can proceed to determine the damage-
related material constants ai. From the nature of their dependence on the laminate

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Transverse matrix cracking 2387

layup, they can be classified into two groups, one group is layup-independent, i.e.
completely determined by the material properties of the cracked lamina itself, and
the other is layup-dependent, i.e. influenced by neighbouring laminae.

(b) Layup-independent constants

When the damage parameter is defined by equation (2.2), the constant a2 in
equations (2.1) can be determined immediately and is simply

a2 = −E0
2 . (2.3)

The effective transverse Young’s modulus of a cracked lamina, E2, is obviously
affected by where the lamina is embedded into the laminate. The layup-dependent
nature of E2 is taken into account through the damage parameter but the constant a2
is clearly a layup-independent, damage-related (but independent of damage) material
constant.

Consider a free-body lamina with transverse matrix cracks in it. Since it is assumed
to be in a plane-stress state, the constants a1, a4 and a5 can be easily determined.
The Young’s modulus and the Poisson’s ratio along the fibres are not expected to be
affected by the existence of cracks (assuming ideal cracks) parallel to the fibres and,
therefore, remain constant. Thus,

a1 = 0 (2.4)

and

a4 = 0. (2.5)

The constant a5 is not an independent constant and it can be expressed in terms
of a1, a2 and a4 from the reciprocal relation

ν12

E1
=
ν21

E2
, (2.6)

resulting in

a5 = −ν0
21. (2.7)

A basic assumption in CDM is that a damaged material at a fixed level of damage
can be treated as an ordinary material with certain effective material properties.
Because of this, equation (2.6) must be satisfied as the condition for the existence of
the strain-energy density function of the fictitious material (Sokolnikoff 1956).

The damage-related constants determined in equations (2.3), (2.4), (2.5) and (2.7)
are either zero or related to some conventional material properties (in the undamaged
state) of the lamina concerned. They are obviously independent of the laminate layup
and, therefore, are termed layup-independent constants.

(c) Layup-dependent constants

Consider the last constant a3 in equations (2.1) which is associated with shear.
Re-writing the third expression of equations (2.1) as

G6 = G0
6(1− kω), (2.8)

one obtains

a3 = −kG0
12. (2.9)
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This expresses the constant a3 in terms of k, the ratio of the relative changes in the
in-plane shear modulus and the transverse Young’s modulus, as a result of damage

k =
(
G6 −G0

6

G0
6

)/(
E2 − E0

2

E0
2

)
. (2.10)

There is no a priori reason to assume k to be layup independent. It is, therefore,
treated as a layup-dependent constant which depends on the material as well as
the layup of the laminate. The constant k is the only constant which needs to be
determined (ideally by experiment) for implementation of the damage representation
in cases where shear is involved. Unfortunately, no experimental data related to the
shear behaviour of cracked laminates are available in the literature to the authors’
knowledge. Indeed, given the layup-dependent nature of this constant, the practical
difficulties in determining it for all circumstances are formidable. As an alternative,
in the next section a theoretical approach for calculating k is described.

Obviously, equation (2.8) is invalid when the damage becomes large. As an extreme
case, when cracks are infinitely dense, the rigidity of the cracked lamina perpendicular
to the cracks vanishes and, hence, ω = 1. The in-plane shear modulus must vanish
correspondingly. This requires that k = 1. However, the values of k obtained from
cases corresponding to smaller values of ω are substantially different from unity.
This suggests a nonlinear dependence of the effective shear modulus on the damage
parameter for large damage, and k can be approximated as a constant only when the
damage is small. To take account of the nonlinearity at large damage, higher-order
terms would have to be included in the Helmholtz free energy. This is beyond any
established development of CDM and will not be pursued in the present paper.

As a result of the simple argument above, the damage representation for transverse
matrix cracks in a lamina of a laminate can be summarized as

E1 = E0
1 , E2 = E0

2(1− ω), G6 = G0
6(1− kω), ν12 = ν0

12 ν21 = ν0
21(1− ω).

(2.11)

3. Effective material properties and verification of the damage
representation

This section is devoted to the verification of the proposed damage representation, and
the justification of the plane stress state assumption which has been introduced. This
is achieved by obtaining the effective material properties of the laminae, both cracked
and uncracked, involved in a laminate and comparing them with those obtained fol-
lowing the proposed damage representation, equations (2.11). An approach which is
independent of the damage representation will be used for this purpose. This is a
micromechanical analysis of a cracked laminate using the finite strip method (Li et
al . 1994) in which the detailed stress and strain distributions in cracked laminates of
any layup sequence and subjected to general loading (any combination of membrane
and bending loads) can be calculated. The method analyses a typical segment of the
laminate bounded by two neighbouring cracks in the lamina of interest. The charac-
terization of the damage in the form of transverse matrix cracking involves two steps.
The first is a fictitious rearrangement of cracks distributed at random into a regularly
spaced state from which the representative volume is taken. Though not reflecting
reality, it is a commonly accepted idealization (Altus & Ishai 1986; Garrett & Bailey
1977; Hashin 1985; Herakovich et al . 1988; Highsmith & Reifsnider 1982; Li et al .
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1994; McCartney 1990; Swanson 1989; Thionnet & Renard 1993) and will be adopted
here. The second step is to smear out the discrete cracks into a degraded continuum
with material properties determined by a damage representation. This can be justi-
fied by comparisons between the effective properties of the laminae obtained from a
micromechanical cracked laminate analysis which takes account of the interlaminar
interactions (including the high stress concentration around the local regions of crack
tips) and those proposed in the damage representation. In other words, the former
serves as a numerical experiment.

From the micromechanical cracked laminate analysis (Li et al . 1994), the effec-
tive properties of a lamina can be obtained from an energy equivalence argument.
From the strain distributions in each lamina, the energies stored in the lamina cor-
responding to given deformations can be calculated. These can be used to extract
the effective material properties of the lamina. When the following six sets of the
generalized membrane strains, εx, εy and εxy,

εx = 1, εy = εxy = 0,
εy = 1, εx = εxy = 0,
εxy = 1, εx = εy = 0,

εx = εy = 1, εxy = 0,
εx = εxy = 1, εy = 0,
εy = εxy = 1, εx = 0,


(3.1)

are applied to the laminate, the respective energies stored in each lamina, U1, U2,
U6, U12, U16 and U26 can each be calculated.

On an energy-equivalent basis, the elements of the effective laminar stiffness matrix
[q] in the laminate axes can be obtained from

q11 = 2U1/V,

q22 = 2U2/V,

q66 = 2U6/V,

q12 = (U12 − U1 − U2)/V,
q16 = (U16 − U1 − U6)/V,
q26 = (U26 − U2 − U6)/V,


(3.2)

where V is the magnitude of the representative volume. This stiffness matrix [q]
is given in laminate axes (aligned with the loading direction usually) and can be
transformed to that, [Q], in the material axes (the elastic principal axes of the lamina
(Tsai & Hahn 1980)) by

Q = T−1qT−T, (3.3)

where T is the coordinate transformation matrix,

T = T (θ) =

 cos2 θ sin2 θ −2 cos θ sin θ
sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ − sin2 θ

 . (3.4)

T−1 = T (−θ) and θ is the orientation of the material axes relative to the lami-
nate axes. The effective material properties, such as Young’s moduli, shear modulus
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Table 1. Material properties and layup definition of the laminates involved

laminate 1 laminate 2 laminate 3 laminate 4 laminate 5
glass/epoxy AS4/3501-6 Tactix 556 Tactix 695 glass/epoxy

(Highsmith & (Talreja et (Talreja et (Talreja et (Li et al .
Reifsnider 1982) al. 1992) al. 1992) al. 1992) 1993)

layup [0◦/90◦3]s [0◦2/90◦2]s [0◦2/90◦2]s [0◦2/90◦2]s [55◦/−55◦/
55◦/−55◦]

t 0.203 mm 0.149 mm 0.140 mm 0.149 mm 0.25 mm
E1 41.7 GPa 140.1 GPa 151.1 GPa 136.8 GPa 45.60 MPa
E2 13.0 GPa 8.36 GPa 7.09 GPa 6.93 GPa 16.23 MPa
ν12 0.30 0.253 0.241 0.268 0.278
G4 4.58 GPa 3.20 GPa 2.72 GPa 2.57 GPa 5.50 MPaa

G6 3.40 GPa 4.31 GPa 3.63 GPa 3.30 GPa 5.50 MPa
tensile strength 1170 MPab — — — 1280 MPa
along fibre

tensile strength 32 MPab — — — 40 MPa
transverse to fibre

shear strength 45 MPab — — — 73 MPa

aAssumed value; binterpolated values; —, values not available.

Table 2. Effective Q matrix (GPa)

crack density, δ Q11 Q22 Q12 Q66 Q16 Q26

0.00 42.90 13.38 4.01 3.40 0.00 0.00
0.25 42.40 7.76 2.33 2.71 −0.05 −0.16
1.00 41.90 2.27 0.68 1.39 −0.02 −0.07

and Poisson’s ratios, can then be extracted from [Q]. They will serve as data from
numerical experiments since the way they are calculated is independent of the dam-
age representation. The damage representation will then be validated against these
numerical experiments in the next section. The first step is to verify the orthotropy of
a damaged lamina which is implied in equations (2.1). Effective material properties
of damaged laminae will be calculated for a series of given crack densities, which can
be used to verify the values of ai determined intuitively in the previous section.

(a) The orthotropy of a cracked lamina in a laminate of arbitrary layup

A lamina is orthotropic if the elements Q16 and Q26 of [Q] are zero or negligible
compared to other elements. This is equivalent to the statement that the material
possesses reflectional symmetries about planes perpendicular, respectively, to axis-1
(along the fibres) and axis-2 (transverse to the fibres and in the plane of the lamina).
A single lamina containing cracks transverse to the lamina and parallel to the fibres is
obviously orthotropic as far as its effective properties are concerned. Furthermore, a
cracked lamina embedded in a cross-ply laminate is bound to be orthotropic because
these symmetries exist for both the cracked lamina and its surrounding laminae and
should the interlaminar interactions be significant they would not affect these topo-
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logical symmetries. What needs to be examined is the case when a cracked lamina is
embedded in a laminate having off-axis laminae because the local stress distributions
in the vicinity of the cracked lamina do not show the required symmetries. As an
example, consider a symmetrical glass/epoxy laminate, [30◦/90◦]s, and suppose that
the two internal 90◦ laminae are cracked. When the laminate is subjected to uniaxial
strain, for instance, εx, which is reflectionally symmetric about the crack’s surfaces,
non-reflectional shear stresses in these 90◦ laminae develop within the local regions
around the cracks along the interfaces with the 30◦ laminae. If their effects became
significant, they could undermine the orthotropy of the effective material properties.
It will be shown that this does not happen. Take the material properties for the
postulated laminate (non-cross-ply) from those of the constituent laminae in lami-
nate 1 in table 1. The elements of [Q] deduced from equations (3.2) and (3.3) by the
energy equivalent technique are listed in table 2 for several typical crack densities.
It is seen that Q16 and Q26 are indeed negligible (the values may even be numerical
rounding errors). Other examples show similar trends. This indicates that the crack-
induced out-of-plane stresses only have localized effects, which disperse the stress
concentrations caused by material discontinuities, but the orthotropy of the effective
properties of the lamina, which represents one of its main global characteristics, is
not affected significantly. Therefore, if the cracked lamina is treated as a material,
it can be considered to be orthotropic insofar as its effective material properties are
concerned.

Because the cracked lamina is, therefore, effectively orthotropic, its effective char-
acteristic properties can be extracted from [Q] by inverting the stiffness-material
property relation,

E1 = (Q11Q22 −Q2
12)/Q22,

E2 = (Q11Q22 −Q2
12)/Q11,

G6 = Q66,

ν12 = Q12/Q22.

 (3.5)

The significance of the result obtained above is that laminates made up of off-axis
laminae, i.e. non-cross-ply laminates, do not present any difficulty to the proposed
damage representation because the damage in a lamina does not alter its material
orthotropy with respect to its principal axes. A lamina-based damage representa-
tion can take advantage of this result by employing a laminate theory to describe
the behaviour of any assembly of laminae, damaged or not, irrespective of layup.
Notwithstanding this important result, cross-ply laminates will be considered main-
ly because of the availability of experimental results for them in the literature, while
the model’s applicability to non-cross-ply laminates will be illustrated through an
example in § 7. Four laminates will be cited below, one tested by Highsmith & Reif-
snider (1982) and analysed by Hashin (1985) and three by Talreja et al . (1992). The
material properties of each of these laminates are listed in table 1 where the layup
and the ply-thickness, t, involved are also given.

(b) The relationship between the damage parameter and the crack density

The relationship between the damage parameter ω = 1 − E2/E
0
2 of a cracked

lamina (full thickness of all the adjacent 90◦ plies) and the crack density δ (non-
dimensionalized with respect to the thickness of the cracked lamina, e.g. 6t for lami-
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Figure 1. Damage parameter versus dimensionless crack density.

nate 1 and 4t for laminates 2, 3 and 4) can be established using the micromechanical
cracked laminate analysis (Li et al . 1994). The procedure is to find the effective
property E2, following equations (3.2), (3.3) and (3.5), at a given crack density δ,
and to calculate ω according to equation (2.2). Figure 1 shows the calculated ω
versus δ curves for the four cracked laminates. The three curves corresponding to
the laminates tested in Talreja et al . (1992) (laminates 2, 3 and 4 in table 1) are
almost coincident. Nonlinearity is apparent between the two characteristic param-
eters ω and δ. While a linear relationship may be suitable for low crack densities,
say below δ = 0.5, the nonlinearity becomes non-negligible at higher crack densities.
The direct use of crack density as the damage measure (Talreja 1985b) means that
the damage representation is unable to reflect reasonably the change of the effec-
tive Young’s modulus of the laminate beyond the range of the almost-linear part of
the corresponding curves, even if the damage is still within the small damage range
imposed by ignoring higher-order terms in the Helmholtz free energy expression.
This confirms that using the crack density as a direct measure of damage in the
damage representation puts an extra limitation on the applicability of the damage
representation. Using the damage parameter defined in equation (2.2) removes this
limitation.

Thionnet & Renard (1993) suggested a simple empirical relation between ω and δ,

ω = rδ1/2, (3.6)
where r is a constant obtainable by curve fitting using the data from the microme-
chanical cracked laminate analysis. For laminate 1 the fitted curve to equation (3.6)
is shown in figure 1 by the dashed line and r is found to be 0.861.

It has also been shown in figure 1 that a function of the form,
ω = 1− exp(−pδ), (3.7)

gives a better fit for this particular case, plotted by the dash–dotted line, where p
is a constant to be determined by curve fitting and equal to 1.985 in this particular
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Table 3. The damage parameter ω in the cracked lamina

(Parametric study of the effects of the uncracked laminae.)

parameters subject to parametric change︷ ︸︸ ︷
amount of E1 E2 ply thickness

parametric change (uncracked laminae) (uncracked laminae) (uncracked laminae)

double 0.602 0.624 0.618
original 0.628 0.628 0.628
half 0.654 0.630 0.635

case. Equation (3.7) improves the fit not only in terms of the standard deviation but
also by removing the slope singularity at δ = 0 in relation (3.6).

Curve fitting, such as that described above, can be used to provide a simple ana-
lytical relation between ω and δ. This, however, does not constitute any part of
the damage model. The property it conveys is that there exists a one-to-one rela-
tion between ω and δ, curve fitting being a simple approximation to the form of
that relationship. More accurate forms can be obtained numerically as long as the
relationship exists. Crack densities are particularly useful in comparing theoretical
predictions with experimental data.

An important result from Thionnet & Renard (1993) is that the constant r, or
to be precise, the damage parameter ω, is intrinsic to the material of the lamina
itself and not to the other undamaged laminae in the laminate. Parametric studies
have been carried out by the present authors on a [0◦/90◦]s laminate with the same
material properties as laminate 1 in table 1, in which the 90◦-ply is assumed to be
cracked. At a fixed crack density, δ = 0.5, parameters such as the thicknesses and
the Young’s moduli E1 and E2 of the 0◦-ply were changed to both double and half of
their original values, respectively. The results are given in table 3 and show negligible
changes (below 5%) in ω of the cracked lamina. The hierarchy of sensitivity to these
parameters in the uncracked lamina (0◦-ply) in descending order is E1, thickness
and then E2. If these minor changes as such are neglected, the damage parameter ω
conforms to the intrinsic nature of the damage parameter as proposed in Thionnet &
Renard (1993). Thus, the layup-dependent nature of ω is simply a matter of whether
the cracked lamina lies on the surface of the laminate or is embedded inside of it.
In other words, the damage parameter is uniquely defined, i.e. for a given cracked
lamina with a given crack density, the value of ω in it will hardly be influenced by the
existence and the development of the damage in any other laminae. However, this
does not exclude the interaction between the laminae in terms of damage growth.
The existence of damage in one lamina does affect the growth of the damage in
another lamina, as will be shown in § 6.

(c) Effective along-fibre Young’s modulus and Poisson’s ratio of a cracked lamina

From the cracked laminate analysis (Li et al . 1994) of the four laminates, it can be
shown that the effective Young’s modulus E1 and the effective Poisson’s ratios ν12
along the fibres (parallel to the crack surfaces) of the cracked lamina in each of the
four laminates analysed are not affected at all by the presence of transverse matrix
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Table 4. (a) Young’s modulus parallel to cracks in cracked laminae (GPa)

crack density, δ laminate 1 laminate 2 laminate 3 laminate 4

0.00 41.7 140.1 151.1 136.8
0.25 41.7 140.1 151.1 136.8
1.00 41.7 140.1 151.1 136.8

(b) Poisson’s ratio parallel to cracks in cracked laminae

crack density, δ laminate 1 laminate 2 laminate 3 laminate 4

0.00 0.300 0.253 0.241 0.268
0.25 0.300 0.253 0.241 0.268
1.00 0.300 0.253 0.241 0.268

cracks and the change in crack density. Table 4 lists these effective properties of the
cracked laminae at some typical crack densities and demonstrates their constancy.

Although this exercise has been carried out for the laminates listed which are all
cross-ply, the results here will be generally true for laminates other than cross-ply.
The only different aspect a non-cross-ply layup presents is the possibility of violation
of the orthotropy of the effective material properties of its constituent laminae as
a result of the asymmetric stresses induced by the off-axis plies. However, this has
been addressed in § 3 a where it has been shown that the orthotropy is not affected.
Therefore, considering only cross-ply laminates here does not put any restriction on
applying the results to laminates of other layups.

Thus as far as the two effective properties, E1 and ν12, are concerned, the inter-
actions between a cracked lamina and its surrounding are not likely to affect them.
From this it can be seen that the values of the constants a1 and a4 for a cracked
lamina in a laminate are indeed negligible as proposed in the damage representation
in the previous section. This also confirms that the constants a1 and a4 are indeed
layup-independent.

(d) The effective along-fibre shear modulus of a cracked lamina

The effective in-plane shear modulus G6 of cracked laminae can also be obtained
from the cracked laminate analysis (Li et al . 1994). For the same laminates as above,
the results shown in figure 2a indicate a nonlinear relation between the relative
change of the in-plane shear moduli and the crack density of a similar form to that
for the transverse Young’s modulus E2 shown in figure 1. However, when the relative
changes of the in-plane shear modulus G6 of the cracked laminae are plotted with
respect to the relative change of transverse Young’s modulus E2, i.e. the damage
parameter ω, as shown in figure 2b, a reasonably linear relationship can be seen.
If these curves are replaced by properly fitted straight lines, the errors introduced
will be very small as long as ω is, say, less than 0.7. A linear relation between the
relative change in the in-plane shear modulus and the relative change in the Young’s
modulus transverse to the cracks conforms to equation (2.8).

Having established this linearity there is no implication that the effective in-plane
shear modulus, G6, of a cracked lamina is not influenced by its surrounding. In fact,
the layup-dependent nature of G6 is undeniable and the channel through which the
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Figure 2. (a) Change of the relative shear modulus of the cracked lamina versus dimensionless
crack density. (b) Change of the relative shear modulus of the cracked lamina versus damage
parameter.

influence of the surroundings is imposed is the proportionality factor k. Different
layups, and hence different constraints on the cracked lamina from its surrounding,
may result in different values of k. After a linear fit has been made to the data
obtained from the cracked laminate analysis, the constant k can be determined.
Table 5 presents two values of k fitting the data resulting from micromechanical
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Table 5. Parameter k

laminate 1 laminate 2 laminate 3 laminate 4

δ < 0.5 0.678 0.751 0.761 0.754
δ < 1.0 0.744 0.765 0.767 0.765

Table 6. Parameter k in the cracked lamina

(Parametric study of the effects of the uncracked laminae.)

parameters subject to parametric change︷ ︸︸ ︷
amount of G6 ply thickness

parametric change (uncracked laminae) (uncracked laminae)

double 0.588 0.636
original 0.636 0.636
half 0.691 0.657

cracked laminate analysis for each of the four laminates up to two different values
of δ, namely 0.5 and 1.0. If the linearity were perfect, there would be no difference
between these two values from curve-fitting over the different ranges. The difference
between them indicates the severity of the nonlinearity in G6–ω relation which, even
so, does not seem to be excessive within the given ranges.

Similar parametric studies to those referred to in § 3 b show that changes in k may
rise 10% or higher when changes in the thickness of the uncracked lamina or the
shear modulus of double and half of their original values, respectively, are made,
as indicated in table 6. It seems that the effective shear modulus of the cracked
lamina is more sensitive to the changes in the surrounding laminae than the effective
transverse Young’s modulus, although it is still reasonable to neglect them to a first
approximation. Such an approximation reduces the layup-dependent nature of k to
the same level as ω, it being a matter of whether the cracked lamina is a surface
lamina or an embedded one. To determine this constant, again use can be made
of a cracked laminate analysis such as the one in Li et al . (1994) and it can be
determined from a simple straight-line fit to the data obtained from such analyses
for a series of given crack densities. Obviously, this can be performed independently
of the analysis of the cracking process but it has to be completed before the cracking
process analysis since this constant is required as input data to such an analysis.

It should be noted that the possibility of determining the constant k computa-
tionally does not undermine the importance of experimental determination of this
constant. On the contrary, experimental data are urgently required for checking these
theoretical predictions.

(e) The effective material properties of uncracked laminae in a cracked laminate

The purpose behind the damage representation proposed is to replace the cracked
lamina in a laminate by a fictitious material whose properties are defined by the
damage representation so that conventional laminate theory can be used to describe
the overall behaviour of the cracked laminate. It has already been shown that the
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Table 7. (a) Young’s modulus parallel to fibres in the uncracked lamina (GPa)

crack density, δ laminate 1 laminate 2 laminate 3 laminate 4

0.00 41.7 140.1 151.1 136.8
0.25 43.9 140.3 151.3 137.0
1.00 42.6 140.3 151.3 137.0

(b) Young’s modulus perpendicular to fibres in uncracked laminae (GPa)

crack density, δ laminate 1 laminate 2 laminate 3 laminate 4

0.00 13.00 8.36 7.09 6.93
0.25 13.11 8.37 7.10 6.94
1.00 13.04 8.37 7.10 6.94

(c) Shear modulus in uncracked laminae (GPa)

crack density, δ laminate 1 laminate 2 laminate 3 laminate 4

0.00 3.40 4.31 3.63 3.30
0.25 3.90 4.50 3.79 3.45
1.00 3.89 4.52 3.81 3.46

(d) Poisson’s ratio parallel to fibres in uncracked laminae

crack density, δ laminate 1 laminate 2 laminate 3 laminate 4

0.00 0.300 0.253 0.241 0.268
0.25 0.354 0.260 0.248 0.275
1.00 0.322 0.260 0.247 0.275

effective material properties, E1, E2, G6 and ν12, obtained from the cracked laminate
analysis (Li et al . 1994) are in good agreement with those given by the damage
representation, provided the damage parameter is properly defined and the damage-
related material constants are properly determined. Therefore the replacement of
the cracked lamina by a fictitious material is a reasonable approximation as far as
this cracked lamina itself is concerned. However, the influence of the damage in
the cracked lamina on its surrounding laminae still needs to be examined. In other
words, how much do the interactions between the cracked lamina and its neighbouring
uncracked lamina affect the behaviour of the uncracked lamina in terms of its effective
material properties?

The effective properties of the uncracked laminae (0◦-ply) in four of the above-
mentioned cracked laminates have been calculated in the same way as those of the
cracked laminae and the results are listed in table 7. It can be seen that these
uncracked laminae are only slightly affected by the presence of the damage in the
neighbouring lamina, and the differences between the original and the effective mate-
rial properties are negligible. In other words, ignoring the changes in the effec-
tive properties of the material in uncracked laminae resulting from the interactions
between the uncracked lamina and its neighbouring cracked lamina, as proposed in
the damage model, does not introduce significant errors.
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4. Laminate analysis using the effective material properties obtained
from the damage representation

The damage evolution law will be developed in §§ 5 and 6 of this paper to pro-
vide a complete description of the cracking process in a laminate. This requires the
damage representation to be applied so that a cracked laminate can be analysed
using a conventional laminate theory, with the cracked lamina replaced by a ficti-
tious homogeneous material with the effective material properties obtained from the
damage representation with a defined level of damage. The laminate analysis used is
based on classical laminate theory (CLT) and is independent of the micromechanical
cracked laminate analysis (Li et al . 1994) except for the provision of some input data,
converting crack density to the damage parameter and obtaining the parameter k
for the laminate. Once the damage parameter is known, all the effective properties
of the fictitious material which replaces the cracked lamina can be obtained from the
damage representation, equations (2.11).

The stress–strain relation for the lamina, designated by the subscript `, in its local
coordinate system (aligned with the principal directions of the material), is

σ` = Q`ε`, (4.1)
where the stress (tensor), σ`, and strain (tensor), ε`, involve only in-plane components
since in CLT a plane-stress state is assumed. In equation (4.1),

Q` = Q0
` (if lamina ` is uncracked), (4.2)

Q` = Q`(ω`) = Q0
` +Q′`ω` (if lamina ` is cracked), (4.3)
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(4.4)

In obtaining equation (4.3) from the expressions for the effective material proper-
ties in equations (2.11), higher-order terms of the damage parameter ω have been
neglected based on the assumption of small damage.

Denote the stress, strain and the stiffness (tensors) of lamina ` in the laminate’s
global coordinate system by τ`, γ` and q`, respectively. Using the coordinate trans-
formations,

τ` = T`σ`, γ` = T−T
` ε`, q` = T`Q`T

T
` , (4.5)

where T` is the coordinate transformation matrix for lamina ` as given in equa-
tion (3.4),

T` = T (θ`) and T−T
` = TT(−θ`), (4.6)
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and θ` is the orientation of the material axes relative to the loading axes of lamina
`, relation (4.1) can be transformed to the global coordinate system,

τ` = q`γ`, (4.7)

where the damage is included via q`.
In CLT, strains at a distance z from the reference surface of the laminate are asso-

ciated with the generalized strains e, as a consequence of Love–Kirchhoff hypothesis,
by

γ = Le, (4.8)

where

L = L(z) =

1 0 0 z 0 0
0 1 0 0 z 0
0 0 1 0 0 z

 (4.9)

and
e = [e1, e2, e3, e4, e5, e6]T.

Multiplying equation (4.7) by LT and then integrating it over the thickness of the
laminate (assembling all the laminae into a laminate) results in

s = De, (4.10)

where
s = [s1, s2, s3, s4, s5, s6]T

are the stress resultants of the laminate and

D =
∑
`

[
(h` − h`−1)q` 1

2(h2
` − h2

`−1)q`
1
2(h2

` − h2
`−1)q` 1

3(h3
` − h3

`−1)q`

]
, (4.11)

where q` is defined in equation (4.5) and h`−1 and h` are the z-coordinates of the
bottom and top surfaces of lamina `.

Equation (4.10) governs the behaviour of the laminate in which cracked laminae
have been replaced by fictitious materials of effective material properties defined
according to the proposed damage representation. As established in the previous
section, this laminate of fictitious laminae will respond to loads effectively the same
as the real cracked laminate.

The laminate theory formulated above can provide many aspects of the behaviour
of cracked laminates. However, in the literature, results are only available for the
global effective properties of laminates. Comparisons will be made with these prop-
erties, namely Young’s modulus, Poisson’s ratio and shear modulus, defined, respec-
tively, as

Ex = s1/e1, when s2 = s3 = s4 = s5 = s6 = 0, (4.12)
νxy = −e2/e1, when s2 = s3 = s4 = s5 = s6 = 0, (4.13)
Gxy = s6/e6, when s1 = s2 = s3 = s4 = s5 = 0. (4.14)

Highsmith & Reifsnider (1982) presented a set of experimental data for a [0◦/90◦3]s
glass/epoxy laminate including stiffness reduction versus crack density in the 90◦
layer. Theoretical predictions have been made by Hashin (1985) and Li et al . (1994)
for the same laminate using different methods of micromechanical cracked laminate
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Figure 3. Relative effective Young’s modulus of laminate 1 versus dimensionless crack density.

analysis. Hashin’s (1985) prediction is a complementary energy-based approach and,
therefore, gives a lower bound. Since his theory assumes that the stresses do not
vary through the thickness of each lamina, the solution is not meant to be exact. In
other words, this theoretical lower bound could be substantially lifted if more refined
assumptions were introduced. The theoretical prediction in Li et al . (1994), on the
other hand, is based on potential energy and it produces an upper bound. The same
problem is re-examined here using classical laminate theory incorporating the damage
representation given in equations (2.11). This solution is neither an upper bound nor
a lower bound. In this analysis, the damage parameter ω, is calculated from the
given crack density using the finite strip micromechanical analysis (Li et al . 1994).
Apart from this, the present analysis is independent of the micromechanical analysis.
The curve of the relative effective stiffness of the laminate, Ex, versus crack density
resulting from the present analysis is shown in figure 3. The differences between
the present study and the micromechanics analyses are due to the differences in the
assumptions introduced. The most important difference is that in the present analysis
the cracks have been smeared out and all the laminae are treated as continua with
their effective properties given by equations (2.11), while in the micromechanical
analyses cracks maintain their discrete nature. All of the solutions are within an
acceptable range, given the nature of the problem.

Figure 4 shows the comparisons between the theoretical predictions using the
present method and the experimental data obtained by Talreja et al . (1992) for the
relative effective Poisson’s ratio νxy of the laminate (with respect to the Poisson’s
ratio of the same laminate in an undamaged state) in the direction perpendicular to
the cracks versus crack density. According to the theoretical analysis, there is not as
much nonlinearity in the change in Poisson’s ratio with respect to crack density as
appeared in the experimental results of Talreja et al . in the early stages, i.e. δ < 0.5.
Therefore, the linear fit to the experimental data used by Talreja et al . (1992) stands
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Figure 4. Change of relative effective Poisson’s ratio of (a) laminate 2, (b) laminate 3, and
(c) laminate 4 versus dimensionless crack density: ——, present laminate theory with fictitious
lamina; ◦ ◦ ◦, experimental results (Talreja et al . 1992); – – –, linear fit to experimental data
(Talreja et al . 1992).

on reasonable ground. Comparing the theoretical results obtained here with each
other, it can be seen that the predicted results for the three laminates are very close
to each other because the elastic material properties of the three laminates used for
the analysis are very close to each other. The present theory assumes that the overall
behaviour of cracked laminates at a fixed crack density is predominantly elastic and
is dominated by the elastic properties of the materials.

However, in figure 4, only (b) shows reasonable agreement with the experimental
results, while in (a) and (c) significant discrepancies are present. The experimental
results for the three laminates in Talreja et al . (1992) show very pronounced differ-
ences between them. According to Talreja et al . (1992) and Talreja (1995), they are
due to the different extent of blunting occurring at the crack tips in these laminates
associated with the material toughness since the differences in the materials involved
in the three laminates lie mainly in their toughnesses. While this is still a possibility
yet to be confirmed, the present theory has clearly not taken account of this effect.
This comparison is discussed further in § 7 a.

Hashin (1985) presented a case involving the same laminate as laminate 1 in table 1
and predicted the effective in-plane shear modulus, Gxy, of the laminate relative to
that of the laminate in the undamaged state, G0

xy, as a function of crack density. This
case was also analysed, using their cracked laminate analysis, by Li et al . (1994).
Similar results are obtained using the proposed ‘fictitious’ laminate analysis and
plotted in figure 5 where the two curves shown for the present analysis correspond to
the two k values given in table 5, respectively. They are both in reasonable agreement
with Hashin’s results. As expected, the curve corresponding to the first k value
(0.678) produces better agreement at low crack densities where parameter k is indeed
constant. As yet, no experimental results regarding shear behaviour are available to
the authors for comparison.
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Figure 5. Relative shear modulus of laminate 1 versus dimensionless crack density.

5. Incremental constitutive relation for a laminate

Damage growth is the next aspect to be pursued, this being in the particular form
of crack multiplication as noted in § 1. When the damage is described by a vector
variable, the vector maintains its orientation and, therefore, it can be fully defined
by its length which is represented by the damage parameter ω. A damage growth
law is a description of the development of this parameter which is determined by the
load and the loading history. In general, this presents a nonlinear problem due to the
degradation in material properties. Conventional solution techniques for nonlinear
problems are usually based on an incremental approach and this will be followed
here. In order to incorporate this incremental constitutive relation into the laminate
analysis described in the last section, it will be expressed in a form suitable for this
type of application and expressed in terms of an incremental relation between the
stress resultants and generalized strains.

The incremental form of the stress, strain and damage relation for lamina ` can
be obtained from equation (4.7) as

dτ` =
∂τ`
∂γ`

dγ` +
∂τ`
∂ω`

dω` = q` dγ` + q′`γ` dω`, (5.1)

where

q′` = T`Q
′
`T

T
` , (5.2)

and, for the sake of convenience and also maintaining an acceptable level of approx-
imation, γ` will be taken as the average strain in the lamina. This is obtained from
equations (4.8) and (4.9) as

γ` = L`e with L` = L(1
2(H`−1 + h`)). (5.3)
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Integration of equation (5.1) is performed over the thickness of the laminate in a
manner similar to that used in obtaining equation (4.10), resulting in

ds = D de+
∑
`

D′`edω`, (5.4)

where de and ds are the incremental generalized strains and the stress resultants of
the laminate and

D′` =

[
(h` − h`−1)q′`

1
2(h2

` − h2
`−1)q′`

1
2(h2

` − h2
`−1)q′`

1
3(h3

` − h3
`−1)q′`

]
. (5.5)

D has been given in equation (4.11). In the laminate, only cracked laminae con-
tribute to the second term on the right-hand side of equation (5.4) and therefore the
summation is over all the cracked laminae in the laminate.

Equation (5.4) relates the incremental stress resultants to the incremental gener-
alized strains, but involved in the relation are the incremental damage parameters of
all the cracked laminae which cannot be determined in equation (5.4). Extra infor-
mation is required and the aim is to eliminate these damage-parameter increments
from equation (5.4). This will be pursued in the next section by making use of the
concept of a damage surface.

6. Damage surface and damage growth in a laminate

Microscopic examinations of cracked laminates show that most cracks span the full
thickness of the lamina in which they occur, at least, when they become fully devel-
oped, and are arrested by the interfaces between the lamina and the adjacent ones.
This suggests that the propagation of cracks through the thickness of the lamina,
which is likely to be an unstable process, is not a dominant feature in the overall
behaviour of a laminate undergoing transverse matrix cracking and, therefore, can be
ignored. A similar assumption has been made in Nairn (1989) using a similar argu-
ment. This leads to the simplification that the behaviour of the material bounded
by two cracks in the cracked lamina is determined by the average stresses over the
thickness of the lamina, to be referred to hereafter as the stresses in the lamina.
Thus, the damage surface f for lamina ` can be assumed to be defined in terms of
the stresses σ` in the lamina. In general, the damage surface for lamina ` can be
expressed in the form

f(σ`, ω`) = 1. (6.1)

The inclusion of ω` in f reflects the ‘strengthening’ effect of the material of lamina
` due to the existence of cracks, i.e. the tendency to require higher local stresses to
increase the damage level. This effect is associated with the influence of defects in the
material and is often referred to as the size effect (Manders et al . 1983; Wisnom 1991).
The strength of virgin material is usually reduced by the defects in the material, some
of which initiate the damage. With the increasing development of damage, more and
more defects develop into damage. The number and severity of defects decrease in the
undamaged part of the material and, therefore, the local strength increases. Results
associated with size effects are often based on Weibull analysis (Weibull 1951) and
are formulated for cases which usually involve only uniaxial stress states. In the
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absence of sufficient information about the size effects of the material, it is assumed
here that f is defined in the form

f(σ`, ω`) = (1 + h`ω
η`
` )−1F (σ`) = 1, (6.2)

where F is a function of σ` taken from one of the conventional failure criteria and h`
and η` are properties of the material of lamina ` associated with the size effects of the
material. In the case of uniaxial stress states, h` and η` are the Weibull parameters
(Weibull 1951).

From equation (6.2) the initiation of damage is completely determined by the
employed failure criterion described by F . As the damage develops the damage sur-
face expands, as can be seen more easily if the damage surface equation (6.2) is
rewritten as

F (σ`) = 1 + h`ω
η`
` . (6.3)

While crude, this is convenient for mathematical manipulation and is simple because
only one damage mechanism, transverse matrix cracking, is included. Any refine-
ments to the definition of the damage surface would have to be based on experimental
data which are unavailable yet for many other damage mechanisms.

An infinitesimal change of the damage state in lamina ` as a result of an infinites-
imal change in the stress resultants applied to the laminate, requires the satisfaction
of the following equation so that the internal state of stress, strain and damage
remains on the damage surface,

∂F

∂σ`

∂σ`
∂s

ds+
∂F

∂σ`

∑
j

∂σ`
∂ωj

dωj − h`η`ωη`−1
` dω` = 0, (6.4)

where j covers every cracked lamina reflecting the influence of the damage in lamina j
on the internal state in lamina `. Neglected here is the explicit interaction associated
with individual cracks in two neighbouring cracked laminae which cross. This is
similar to the situation where the local effects of crack tips at lamina interfaces
are neglected and is justified by the same assumption that a lamina, either cracked
or not, is under a plane-stress state effectively as discussed at the beginning of § 3.
Approximations such as this represent the constraints of a continuum approach which
cannot include such discrete effects. In contrast, discrete approaches such as fracture
mechanics-based models are incapable of dealing with information of a distributed
nature, e.g. the effects of a massive number of cracks distributed through a piece of
material.

Substituting equation (5.4) into equation (6.4) and separating the terms for lam-
ina ` from the others, one obtains[
−h`η`ωη`−1

` +
∂F

∂σ`

(
∂σ`
∂ω`

+
∂σ`
∂s

D′`e
)]

dω`

+
∂F

∂σ`

∑
j 6=`

(
∂σ`
∂ωj

+
∂σ`
∂s

D′je
)

dωj = − ∂F
∂σ`

∂σ`
∂s

D de. (6.5)

If the same equation as above is written for each of the cracked laminae, a set of
simultaneous equations for all the incremental damage parameters in all the cracked
laminae is obtained. The coefficient matrix may seem to be a full matrix, or in other
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words, dω` and dωj are coupled (j 6= `). This coupling can be eliminated and all the
off-diagonal elements in the coefficient matrix vanish as shown below.

Stresses σ`, which are related to τ` by equation (4.5), depend on the applied stress
resultants, s, and the damage parameter ωj of all the cracked laminae in the laminate,
i.e.

σ` = σ`(s, ωj) = Q`ε` = Q`T
T
` γ` = Q`T

T
` L`e = Q`T

T
` L`D

−1s. (6.6)

From this, the following can be obtained:

∂σ`
∂s

=
∂σ`
∂ε`

∂ε`
∂γ`

∂γ`
∂e

∂e

∂s
= Q`T

T
` L`D

−1, (6.7)

∂σ`
∂ω`

=
∂Q`
∂ω`

TT
` L`D

−1s+Q`T
T
` L`

∂D−1

∂ω`
s

= (Q′`T
T
` L` −Q`TT

` L`D
−1D′`)e (6.8)

and
∂σ`
∂ωj

= −Q`TT
` L`D

−1D′je (j 6= `). (6.9)

In obtaining the second part of the above expression use has been made of the
following identities:

∂(D−1)
∂ωi

= −D−1 ∂D

∂ωi
D−1 = −D−1D′iD

−1 and e = D−1s. (6.10)

Substituting equations (6.7)–(6.9) into equation (6.5), the coupling terms (those
inside the summation sign) cancel each other.

The incremental damage parameters of lamina ` can be obtained in terms of incre-
mental generalized strain as

dω` = B` de, (6.11)

where

B` =

∂F

∂σ`
Q`T

T
` L`

h`η`ω
η`−1
` − ∂F

∂σ`
Q′`T

T
` L`e

. (6.12)

The incremental stress-resultant-generalized strain relation, which has taken account
of the growth of damage in all the laminae of the laminate, can then be obtained by
substituting equation (6.11) into equation (5.4) as

ds = Dd de, (6.13)

where

Dd = D +
∑
`

D′`eB`. (6.14)

Equation (6.13) looks similar to the stress-resultant-generalized strain relation
equation (4.8) and indeed it is the incremental form of that relation. Built into it is
the influence of damage growth of laminae experiencing transverse matrix cracking.
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Matrix Dd gives the tangent stiffness of the laminate at the current deformation and
damage state. It can be used in an incremental laminate analysis involving trans-
verse matrix cracking. In such an analysis, when the stress-resultant increment ds is
applied, the generalized strain increment de can be determined from equation (6.13)
as

de = D−1
d ds. (6.15)

Substituting this back into equation (6.11), dω` can be obtained once de is known.
It should be pointed out that a negative value produced by equation (6.11) for dω`

indicates unloading in lamina ` and equation (6.11) should be replaced by

dω` = 0, (6.16)

because of the irreversible nature of damage. It means that unloading does not follow
the same path as that of loading. This behaviour provides the mechanism in the the-
oretical model which allows energy dissipation as a result of damage development in
the material. When unloading is identified in a lamina, the lamina should be excluded
from the summation in equation (6.14). This operation discounts the contribution
of the damage growth in this particular lamina but not the existing damage in it.
When the damage in a lamina stops growing, the damage state stays fixed and the
effects of fixed damage have been included in the other part of the right-hand side
expression, D, of equation (6.14).

7. Examples

The model for the damage in the form of transverse matrix cracking in laminated
composites has been developed in the previous sections. Its applicability is not subject
to any restriction from the layup of the laminate, such as symmetric or asymmetric,
balanced or not, cross-ply or non-cross-ply. In other words, it applies to laminates of
unidirectional laminae with arbitrary construction, provided that the mode of dam-
age is in the form of transverse matrix cracking. It is also capable of dealing with any
combination of loads expressed in terms of stress resultants. However, constrained by
the availability of published experimental data, only two cases will be studied here:
a cross-ply laminate under uniaxial tension; and an angle-ply laminate under biax-
ial tension. When defining the damage surface in the analysis, the maximum stress
criterion (Tsai & Hahn 1980) is employed to define the function F in equation (6.2)
for the sake of simplicity but there is no restriction in the theory on using any other
criterion. The strengthening behaviour due to size effects, though being recognized
in other treatments of damage (e.g. Nairn 1989; Laws & Dvorak 1988), has not been
included in other solutions using continuum damage mechanics. Consequently, the
parameters h and η are not available. For the purpose of illustration, two sets of
values, h = η = 0, corresponding to the case where no size effect is present, and
h = η = 0.5 have been chosen on a somewhat arbitrary basis.

(a) A cross-ply laminate subjected to uniaxial tension

A glass/epoxy cross-ply laminate, [0◦/90◦3]s, was tested by Highsmith & Reifsnider
(1982). It is one of the most frequently cited cases in the literature (Hashin 1985;
Talreja 1985b), and many models for damaged composites have been compared with
the data from this experiment. Most of these models are fracture-mechanics-based
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Figure 7. Applied stress and the damage parameter versus strain.

and are restricted to cross-ply laminates, unlike the present model (see § 7 b). In
these previous analyses, predictions of the properties and behaviour of the laminate
were made when the crack density was prescribed and, to the author’s knowledge,
theoretical stress–strain curves have not been reproduced independently of experi-
ments. An example of an earlier study which does include stress–strain curves is the
paper by Eckold et al . (1995). However, these curves were produced by an iterative
procedure which matches the output of a micromechanics analysis to experimental
stress–strain curves. From this process emerges a value for the mean cracking energy
(a supposed material property), though the universal relevance of this parameter
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Figure 8. Relative change in Poisson’s ratio of the laminate versus crack density.

is unclear. This approach, while interesting and constructive, does not represent
a method for predicting laminate stress–strain curves ab initio. With the damage
growth model presented above this is now possible. The elastic material constants
for the laminae were given in Hashin (1985) and Highsmith & Reifsnider (1982):
see laminate 1 in table 1. In order to construct the damage surface, the strength
properties are also required but these are not provided in the literature. They are
defined here by interpolating the strength properties, assuming them to be propor-
tional to the ratio of the corresponding elastic constants of a similar material given
as laminate 5 (Li et al . 1993) in table 1. The predicted results for the stiffness of the
laminate and the crack density in the cracked lamina versus applied stress (averaged
over the thickness of the laminate) curves are shown in figure 6. The two sets of
curves corresponding to h = η = 0 and h = η = 0.5 each give reasonable predic-
tions for the stiffness reduction in different parts of the curves, the former at higher
stress levels and the latter at lower stresses. The predicted crack densities for these
two sets of parameters seem to embrace the experimental values reasonably well.
In general, with the size effect included, the laminate shows higher stiffness and
slower crack density growth than without it. This illustrates the strengthening effect
in a straightforward manner. Figure 7 shows the stress–strain curves, which are in
excellent agreement with the experimental data. Also included in figure 7 are the
predictions of the damage parameters in both the 90◦ and 0◦ laminae.

It is interesting to note that the 0◦ plies on both sides of the laminate start to
crack at a stress of about 125 MPa. This phenomenon was not reported in Highsmith
& Reifsnider (1982) but it is plausible that it occurs as the result of the Poisson’s
ratio effect. The width of the specimen would affect the result greatly due to the
free-edge effects. Further experiments are encouraged in order to verify this.

The importance of cracking in the 0◦ ply lies in its effects on the overall Poisson’s
ratio of the laminate as shown in figure 8. It results in a fluctuation in the change
(less obvious in the one corresponding to h = η = 0.5) of the parameter which
corresponds to the initiation of cracking in the 0◦ plies. It is suspected that the
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nonlinear variations in the experimentally measured Poisson’s ratio in Talreja et al .
(1992) may be the result of this. Should cracking in 0◦ plies take place, the validity of
extracting the properties of cracked laminates from experimental data assuming that
only the 90◦ plies were cracked becomes questionable. Unfortunately, predictions for
the cases described in Talreja et al . (1992) using the present theory cannot be made
because the strength properties of the materials are unavailable (R. Talreja and S.
Yalvac, personal communication).

(b) An angle-ply laminate subjected to 2:1 ratio biaxial tensile loads

A glass/epoxy [+55◦/−55◦/+55◦/−55◦] angle-ply laminate is analysed as a second
example. The laminate is subjected to biaxial tensile loads applied in a 2:1 ratio. This
is the basic loading condition for a cylindrical pressure vessel. Experimental stress–
strain data for the internal pressurization of a closed-ended cylinder with this wall
construction having an internal diameter of 100 mm and a nominal wall-thickness of
1 mm are given by Soden et al . (1993) and the appropriate material properties are
those listed in table 1 under laminate 5. Because the laminate layup is antisymmetric,
there would be some twisting as a result of in-plane tension if the laminate were free
to deform. To simulate a cylindrical pressure vessel, such twisting is suppressed in
the analysis.

The stress σy (σy : σx = 2 : 1) averaged over the thickness of the laminate is plotted
against the strains εx and εy in figure 9, respectively. It can be seen that εy is not too
sensitive to size effects because the behaviour in the y-direction of the laminate is fibre
dominated and is not sensitive to matrix cracking. εx is much more sensitive to size
effects since, in this direction, the matrix in the material plays a significant role. The
comparison with the experimental data (Soden et al . 1993) is encouraging. Without
the damage model, a linear prediction would produce straight lines as extensions of
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Figure 10. Predicted crack density and damage parameter versus applied load for a ±55◦

laminate under biaxial tension at a ratio 2:1.

the initial linear segments for both εx and εy. Neither crack density data nor any other
damage measure are available from the experiments. Therefore comparisons between
experiments and theory are not possible. However, the predictions of various aspects
of the damage are given in figure 10. The predicted crack density in each lamina
has been non-dimensionalized with respect to the thickness of the lamina. As has
been shown in the previous example, the crack density is, in general, sensitive to size
effects. Due to the angle-ply layup of the laminate and the loading, all the laminae
behave in the same way in terms of the stresses and strains referred to the local
material axes and the damage parameter. It is interesting to note that the calculated
crack density in an external lamina is significantly different from that in an internal
lamina. This is a consequence of the different constraints to which an external lamina
and an internal lamina are subjected. A crack reduces stresses to a greater extent in
an external lamina than in an internal one.

8. Conclusions

A damage representation for cracked laminates appropriate to the particular mech-
anism of damage by transverse matrix cracking in the direction parallel to the fibres
has been proposed. It stems from a rearrangement of Talreja’s formulation, which is
believed to give clearer physical meaning to the material constants introduced by the
damage considerations. With the help of the assumption that the interlaminar force
interactions in a cracked laminate do not make significant differences as far as the
effective material properties of the laminae (whether cracked or not) are concerned,
and hence can be neglected, most of the constants can be determined immediately,
leaving only one layup-dependent damage-related material constant associated with
in-plane shear. It has been shown that this damage-related material constant can be
estimated theoretically. This approach therefore brings significant simplifications to
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the damage representation and, at the same time, minimizes the dependence of the
theory on experiments for determining the damage-related material constants. The
assumption introduced has been shown to be reasonable based on the results from
a micromechanical cracked laminate analysis which is independent of the damage
representation. It has been established that the overall behaviour of a cracked lam-
inate can be satisfactorily predicted by a laminate theory, with the cracked lamina
replaced by a fictitious material with the effective material properties obtained from
the damage representation at the prescribed levels of damage. Thus, in conjunction
with a damage growth law which describes the evolution of the damage parameter
ω, it has been developed into a complete damage model which is able to predict the
consequences of the cracking process for practical cases.

The damage growth law proposed is formulated for the process of multiplication
of transverse matrix cracks. By making use of the concept of a damage surface, an
incremental constitutive relation between the stress resultants and the generalized
strains has been obtained which is convenient for applications in laminate analysis.
The examples analysed have shown good agreement with experimental results in
spite of the lack of detailed material behaviour data.

Unlike many existing damage models, the one presented in this paper is applicable
to arbitrary laminates and is not restricted to cross-ply layups. General loading
conditions can be treated, provided the damage is in the form of transverse matrix
cracking.
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